Ionenfluss im menschlichen Körper erstmals "filmisch" festgehalten

Die Pharmakologin Anna Stary-Weinzinger und ihr Team konnten erstmals einen Ionenfluss "filmisch" festhalten. Das Forschungsprojekt trägt dazu bei, die Funktionsweise von lebensnotwendigen Signalen, wie Herzschlag oder Muskelbewegungen, besser zu verstehen.

Spannungsgesteuerte Ionenkanäle generieren lebensnotwendige elektrische Signale im menschlichen Körper. Ohne diese Proteine könnten zentrale Funktionen wie z.B. unser Herzschlag, die Signalweiterleitung im Gehirn oder Muskelbewegungen nicht stattfinden. Besonders faszinierend ist, dass diese Proteine "wählerisch" sind: Sie lassen selektiv nur bestimmte Ionen durch und ermöglichen dabei trotzdem enorme Durchflussraten.

Kristallstrukturen und Computersimulation

Mehr über die Funktionsweise der außergewöhnlichen Ionenkanäle verrät der Blick auf ihre Kristallstrukturen: Diese zeigen unter anderem eine kurze, mit Wasser gefüllte "Filterstruktur", die von vier negativ geladenen Aminosäuren umgeben ist. Sie ist für den selektiven Natriumfluss verantwortlich. Da Kristallstrukturen jedoch "statische" Momentaufnahmen darstellen, ist es sehr schwierig, daraus Rückschlüsse auf jene dynamischen Prozesse zu ziehen, die den Ionenfluss erst ermöglichen. Diese Fragestellungen eignen sich optimal für Computersimulationen.

Simulationen des schnellsten Computers Österreichs "filmen" Ionenbewegungen

Um den faszinierenden Proteinen quasi bei der Arbeit zusehen zu können, hat das Team vom Department für Pharmakologie und Toxikologie der Universität Wien sogenannte Moleküldynamiksimulationen durchgeführt. Die für diese Analyse notwendige Rechenleistung lieferte der Vienna Scientific Cluster (VSC), der schnellste Computer Österreichs. Dabei entdeckten die ForscherInnen der Universität Wien, dass der Ionenfluss vom Extrazellularraum in die Zelle deutlich schneller erfolgt als in die umgekehrte Richtung. "Den Schlüssel für diese überraschende Entdeckung liefert eine negativ geladene Aminosäure: Glutaminsäure 53, kurz E53", erklärt Pharmakologin Anna Stary-Weinzinger, Leiterin des Forschungsprojekts an der Universität Wien: "E53 kann je nach Ionenflussrichtung ihre Konformation verändern und moduliert dadurch die Ionenflussgeschwindigkeit."


Die Pharmakologin Anna Stary-Weinzinger und Song Ke, Dissertant in der Gruppe von Anna Stary-Weinzinger, haben mit einem Team an der Universität Wien erstmals den Ionenfluss "filmisch" festgehalten und ihre Ergebnisse in der renommierten Fachzeitschrift PLOS Computational Biology publiziert.



Glutaminsäure E53 reguliert den Ionenfluss

Die Moleküldynamiksimulationen zeigen, dass die Aminosäure E53 zwei unterschiedliche Orientierungen einnehmen kann, je nach Richtung des Ionenflusses. Durch diese "Schaltungsfunktion" ermöglicht E53 einen schnellen Ioneneinstrom in die Zelle, wenn es sich in der sogenannten "nicht geflippten Auswärtsstellung" befindet. In der "Flip-Stellung" hingegen beschleunigt E53 das Ausströmen der Ionen: "Mit Hilfe 'Freier Energie Berechnungen' konnten wir zeigen, dass der Weg aus der Zelle für die Ionen schwieriger ist als jener in die Zelle, weil es im Protein eine sogenannte 'Energiebarriere' für den auswärts gerichteten Natriumfluss gibt", erklärt Song Ke, Dissertant in der Gruppe von Anna Stary-Weinzinger an der Universität Wien, genauer: "In der 'Flip'-Stellung hilft E53 den Ionen dabei, diese Hürde zu überwinden."

Die ForscherInnen halten es für wahrscheinlich, dass diese Bewegungen auch eine wichtige Rolle bei der sogenannten "Inaktivierung" spielen – jenem Mechanismus, der den Ionenfluss kontrolliert stoppt, um die Signalweiterleitung zu unterbrechen. Gefördert wurde die Arbeit vom FWF-Doktoratskolleg "Molecular Drug Targets" (MolTag), das von Steffen Hering, Vorstand des Departments für Pharmakologie und Toxikologie der Fakultät für Lebenswissenschaften der Universität Wien, geleitet wird. (vs)

Die Publikation "Different Inward and Outward Conduction Mechanisms in NaVMs Suggested by Molecular Dynamics Simulations" (AutorInnen: Song Ke, E. N. Timin, Anna Stary-Weinzinger) erschien am 31. Juli im Fachmagazin PLOS Computational Biology.