Molekül für Molekül zum Quantenfilm

Einem internationalen Forschungsteam ist es gelungen einen Film zu drehen, der zeigt, wie aus dem zufälligen Auftreffen einzelner Moleküle ein quantenmechanisches Interferenzmuster entsteht. Der Film von Thomas Juffmann et al. ist seit 25. März 2012 auf der Website von "Nature Nanotechnology" abrufbar.

Der Nobelpreisträger Richard Feynman behauptete einst, dass die durch Materiewellen verursachten Interferenzeffekte das einzige Rätsel der Quantenphysik beinhalteten. Materiewellen besser zu verstehen und für neuartige Anwendungen einzusetzen, steht auch im Zentrum der Forschung des Quantennanophysik-Teams um Markus Arndt, Professor für Quantennanophysik und am Vienna Center for Quantum Science and Technology (VCQ).

Zur Entstehung des Quantenfilms
 
Erstmals zeigen die WissenschafterInnen nun in einem Film, wie bis zu 100 Mikrometer (Zehntelmillimeter) große quantenmechanische Beugungsstrukturen wohlgeordnet aus zufällig eintreffenden einzelnen Phthalocyanin-Molekülen entstehen, nachdem diese hochfluoreszierenden Teilchen ein hauchdünnes nanomechanisches Gitter durchflogen haben. Sobald die Moleküle auf dem Detektor auftreffen, werden sie mittels eines hochauflösenden Fluoreszenzmikroskops in Echtzeit abgebildet. Die Empfindlichkeit des Versuchsaufbaus ist dabei so sensibel, dass jedes der Moleküle einzeln als leuchtender Punkt für die Kamera sichtbar gemacht werden kann. Dabei kann die Position jedes Moleküls mit einer Genauigkeit von rund zehn Nanometern vermessen werden. Das ist weniger als ein Tausendstel des Durchmessers eines menschlichen Haares und immer noch ein Sechzigstel der Wellenlänge des abbildenden Lichtes.

Ein Hauch von Nichts

Im Experiment stellen insbesondere "van der Waals-Kräfte" zwischen den Molekülen und dem Gitter eine Herausforderung dar. Sie treten aufgrund von Quantenfluktuationen des Vakuums zwischen Molekül und Gitterwand auf und beeinflussen die beobachteten Interferenzmuster stark. Um diese Wechselwirkung zu verringern, wurden nun nur zehn Nanometer dünne Gitter verwendet, was nur noch rund 50 Lagen von Siliziumnitrid entspricht. Die Gitterspalte wurde dafür von den Nanotechnologen um Ori Cheshnovski, Professor an der Universität Tel Aviv, mittels eines fokussierten Ionenstrahls in die ultradünne Siliziumnitrid-Membran geschnitten.

Maßgeschneiderte Nanopartikel
 
Bereits in der vorliegenden Studie konnten die Experimente auf schwerere Derivate von Phthalocyanin ausgeweitet werden, die von der Gruppe um Marcel Mayor, Professor an der Universität Basel, für die Experimente maßgeschneidert synthetisiert wurden. Sie sind die bislang massivsten Moleküle, für die die quantenmechanische Fernfeldbeugung untersucht wurde.

Motivation und Fortsetzung

Die neu entwickelten und neu kombinierten Mikro- und Nanotechnologien für die Erzeugung, Beugung und Detektion von Molekularstrahlen sind relevant für die Ausdehnung von Quanteninterferenz-Experimenten zu immer komplexeren Objekten, sind aber teils auch generalisierbar für die Atominterferometrie.

Die Experimente haben vor allem eine didaktische Komponente: Sie machen den Einzelteilchencharakter eines komplexen Quantenbeugungsmusters auf makroskopischer Skala für das Auge sichtbar. Man kann sie in Echtzeit entstehen sehen, aber auch nach Stunden noch anschauen. Das Experiment macht den Welle-Teilchen-Dualismus der Quantenphysik somit auf eine besondere Art greifbar.

Die Experimente haben aber auch praktische Aspekte: Sie ermöglichen die Vermessung molekularer Eigenschaften in der Nähe nanomechanischer Strukturen und zeigen den Weg zu Experimenten, bei denen einzelne Moleküle nur noch an wenigen Atomen gebeugt werden können.

Der Film ist seit Montag, 26. März 2012, auf der Website www.quantumnano.at abrufbar.

Die Publikation "Real-time single-molecule imaging of quantum interference" (Autoren: Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori Cheshnovsky und Markus Arndt) erschien am 25. März 2012 im Fachjournal "Nature Nanotechnology".

Dieses Projekt wurde vom FWF Projekt Z149-N16 (Wittgenstein), ESF/FWF/SNF MIME (I146) und dem Schweizer Nationalfonds im NCCR "Nanoscale Science" unterstützt.